Indexed by:
Abstract:
The low specific surface area and low charge transfer efficiency of conventional graphite carbon nitride (g-C3N4) are the main obstacles to its application in photocatalytic CO2 reduction. In this paper, graphite carbon nitride was protonated by phosphoric acid (H3PO4), and a new few-layer porous carbon nitride was prepared by intercalation polymerization with doping bimetal in the cavity of g-C3N4. Under visible light irradiation, the CO formation rate of Co/Ni co-doped g-C3N4 can reach 13.55 mu mol g(-1) h(-1), which was 3.9 times higher than that of g-C3N4 (3.49 mu mol g(-1) h(-1)). The density functional theory (DFT) calculations showed that the addition of Co and Ni in the cavity of g-C3N4 can induce bimetallic synergistic regulation of the electronic structure, thus improving the separation efficiency of charges and visible light capture ability of g-C3N4. Our work has great reference value for designing and synthesizing novel bimetallic co-doped g-C3N4 photocatalytic materials. (C) 2022 Published by Elsevier Inc.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2022
Volume: 625
Page: 722-733
9 . 9
JCR@2022
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 30
SCOPUS Cited Count: 32
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: