Indexed by:
Abstract:
针对目前高分辨率遥感影像耕作梯田提取方法普遍精度不高的问题,提出一种面向对象与卷积神经网络相结合的方法。以福建省南平市为例,构建面向对象卷积神经网络,利用高分辨率GF-2和ZY-3遥感数据进行耕作梯田精细提取,并对比分析深度学习与传统方法、不同分辨率数据源以及不同分类器对提取效果的影响。结果表明:该方法总体精度达到87.1%,Kappa系数为0.76,与采用低层次特征的随机森林分类对比,总体精度提高了10.2%;分别结合深层次特征与随机森林、XG Boost和Ada Boost分类器,总体精度差异小于2%;该方法基于GF-2影像的提取精度较ZY-3提高了4.6%。此方法可有效表征高分辨率影像梯...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
遥感信息
ISSN: 1000-3177
CN: 11-5443/P
Year: 2022
Issue: 02
Volume: 37
Page: 138-144
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: