Indexed by:
Abstract:
为提高小规模训练集下CNN特征驱动的浮选工况识别效果,提出一种基于泡沫红外与可见光图像CNN特征提取及自适应迁移学习的工况识别方法.首先构建基于AlexNet的双模态CNN特征提取及识别模型,并通过RGB-D大规模数据集对模型的结构参数进行预训练;其次,用多个串联的双隐层自编码极限学习机代替预训练模型的全连接层,实现对双模态CNN特征的融合及逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策;最后构建浮选小规模数据集对迁移后的模型进行训练,并改进量子狼群算法用于模型参数优化.实验结果表明:自适应迁移学习能够明显提高小样本数据集下的识别准确度,采用双模态CNN迁移学习较单模态CNN迁移学习的工况识别精度提高了3.06%,各工况的平均识别准确率达到96.83%,识别精度和稳定性较现有方法有较大提升.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
光子学报
ISSN: 1004-4213
CN: 61-1235/O4
Year: 2020
Issue: 10
Volume: 49
Page: 167-178
0 . 6 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: