Indexed by:
Abstract:
在面对具有突变性、不稳定性以及非线性等特征的区域物流需求预测问题时,传统的时间序列、BPNN、GM-BPNN等预测方法在拟合物流需求曲线上存在缺陷,文章提出了改进GM-BPNN组合预测方法,利用ARIMA和遗传算法(GA)分别改进GM(1,1)和BPNN,根据有效度确定加权系数并构建线性组合模型,并以浙江、广东、江苏进行实例验证。结果表明,相比传统时间序列、BPNN、多元回归、GM-BPNN等预测方法,改进的GM-BPNN组合预测方法提高了物流需求预测的精确度。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
统计与决策
ISSN: 1002-6487
CN: 42-1009/C
Year: 2022
Issue: 16
Page: 26-29
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: