Indexed by:
Abstract:
Class imbalance is a common problem in real-world applications and usually poses a major challenge to artificial intelligent (AI)-based decision models. The present work introduces a novel ensemble decision model which utilizes an explainable and fast-growing rule-based system, called extended belief rule base (EBRB) decision model, to alleviate the impact of class imbalance, where the proposed ensemble EBRB model includes two core components: a diversity-based base EBRB construction scheme and a consistency-based ensemble EBRB inference scheme. Specifically, for the purpose of enhancing diversity in the construction scheme, various kinds of oversampling techniques are applied to construct diverse base EBRBs firstly, followed by the calculation of attribute weights based on information gain. As for the inference scheme, the proposed ensemble EBRB model aims to produce inferential outputs not only integrating the rules activated from all base EBRBs, but also taking into consideration the consistency of the activated rules. In experimental study, twenty-six imbalanced classification datasets are used to demonstrate the effectiveness of the proposed ensemble EBRB decision model. Results demonstrate that the proposed model outperforms conventional EBRB systems and other typical imbalanced classifiers. (C) 2022 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
KNOWLEDGE-BASED SYSTEMS
ISSN: 0950-7051
Year: 2022
Volume: 242
8 . 8
JCR@2022
7 . 2 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:61
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: