• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Han, Zixin (Han, Zixin.) [1] | Lan, Junlin (Lan, Junlin.) [2] | Wang, Tao (Wang, Tao.) [3] | Hu, Ziwei (Hu, Ziwei.) [4] | Huang, Yuxiu (Huang, Yuxiu.) [5] | Deng, Yanglin (Deng, Yanglin.) [6] | Zhang, Hejun (Zhang, Hejun.) [7] | Wang, Jianchao (Wang, Jianchao.) [8] | Chen, Musheng (Chen, Musheng.) [9] | Jiang, Haiyan (Jiang, Haiyan.) [10] (Scholars:姜海燕) | Lee, Ren-Guey (Lee, Ren-Guey.) [11] | Gao, Qinquan (Gao, Qinquan.) [12] (Scholars:高钦泉) | Du, Ming (Du, Ming.) [13] | Tong, Tong (Tong, Tong.) [14] (Scholars:童同) | Chen, Gang (Chen, Gang.) [15]

Indexed by:

SCIE

Abstract:

Gastric cancer is the third most common cause of cancer-related death in the world. Human epidermal growth factor receptor 2 (HER2) positive is an important subtype of gastric cancer, which can provide significant diagnostic information for gastric cancer pathologists. However, pathologists usually use a semi-quantitative assessment method to assign HER2 scores for gastric cancer by repeatedly comparing hematoxylin and eosin (H&E) whole slide images (WSIs) with their HER2 immunohistochemical WSIs one by one under the microscope. It is a repetitive, tedious, and highly subjective process. Additionally, WSIs have billions of pixels in an image, which poses computational challenges to Computer-Aided Diagnosis (CAD) systems. This study proposed a deep learning algorithm for HER2 quantification evaluation of gastric cancer. Different from other studies that use convolutional neural networks for extracting feature maps or pre-processing on WSIs, we proposed a novel automatic HER2 scoring framework in this study. In order to accelerate the computational process, we proposed to use the re-parameterization scheme to separate the training model from the deployment model, which significantly speedup the inference process. To the best of our knowledge, this is the first study to provide a deep learning quantification algorithm for HER2 scoring of gastric cancer to assist the pathologist's diagnosis. Experiment results have demonstrated the effectiveness of our proposed method with an accuracy of 0.94 for the HER2 scoring prediction.

Keyword:

CNN deep learning gastric cancer HER2 score prediction re-parameterization

Community:

  • [ 1 ] [Han, Zixin]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 2 ] [Lan, Junlin]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 3 ] [Wang, Tao]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 4 ] [Hu, Ziwei]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 5 ] [Huang, Yuxiu]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 6 ] [Deng, Yanglin]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 7 ] [Gao, Qinquan]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 8 ] [Du, Ming]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 9 ] [Tong, Tong]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 10 ] [Han, Zixin]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 11 ] [Lan, Junlin]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 12 ] [Wang, Tao]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 13 ] [Hu, Ziwei]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 14 ] [Huang, Yuxiu]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 15 ] [Deng, Yanglin]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 16 ] [Jiang, Haiyan]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 17 ] [Gao, Qinquan]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 18 ] [Tong, Tong]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 19 ] [Zhang, Hejun]Fujian Med Univ, Canc Hosp, Fujian Canc Hosp, Dept Pathol, Fuzhou, Peoples R China
  • [ 20 ] [Wang, Jianchao]Fujian Med Univ, Canc Hosp, Fujian Canc Hosp, Dept Pathol, Fuzhou, Peoples R China
  • [ 21 ] [Chen, Musheng]Fujian Med Univ, Canc Hosp, Fujian Canc Hosp, Dept Pathol, Fuzhou, Peoples R China
  • [ 22 ] [Jiang, Haiyan]Fuzhou Univ, Coll Elect Engn & Automation, Fuzhou, Peoples R China
  • [ 23 ] [Chen, Gang]Fuzhou Univ, Coll Elect Engn & Automation, Fuzhou, Peoples R China
  • [ 24 ] [Lee, Ren-Guey]Natl Taipei Univ Technol, Dept Elect Engn, Taipei, Taiwan
  • [ 25 ] [Gao, Qinquan]Imperial Vis Technol, Fuzhou, Peoples R China
  • [ 26 ] [Tong, Tong]Imperial Vis Technol, Fuzhou, Peoples R China
  • [ 27 ] [Chen, Gang]Fujian Prov Key Lab Translat Canc Med, Fuzhou, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Source :

FRONTIERS IN NEUROSCIENCE

ISSN: 1662-4548

Year: 2022

Volume: 16

4 . 3

JCR@2022

3 . 2 0 0

JCR@2023

ESI Discipline: NEUROSCIENCE & BEHAVIOR;

ESI HC Threshold:52

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 10

SCOPUS Cited Count: 10

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:65/10049942
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1