• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Quan, Jiawei (Quan, Jiawei.) [1] | Ye, Jingxuan (Ye, Jingxuan.) [2] | Lan, Junlin (Lan, Junlin.) [3] | Wang, Jianchao (Wang, Jianchao.) [4] | Hu, Ziwei (Hu, Ziwei.) [5] | Guo, Zhechen (Guo, Zhechen.) [6] | Wang, Tao (Wang, Tao.) [7] | Han, Zixin (Han, Zixin.) [8] | Wu, Zhida (Wu, Zhida.) [9] | Tan, Tao (Tan, Tao.) [10] | Du, Ming (Du, Ming.) [11] | Tong, Tong (Tong, Tong.) [12] (Scholars:童同) | Chen, Gang (Chen, Gang.) [13]

Indexed by:

EI Scopus SCIE

Abstract:

Lymphoma is a malignant tumor originating from the lymphohematopoietic system. At present, pathological evaluation is one of the important methods to diagnose malignant lymphoma. In clinical practice, the diagnosis of lymphoma, especially in newly diagnosed patients, depends mainly on histopathological examination of the lesion. The type of lymphoma is determined by repeatedly comparing hematoxylin-eosin (H&E) whole slide images (WSIs) and immunohistochemical WSIs under a microscope. It is a repetitive, tedious, and time-consuming process. Therefore, it is extremely important to establish a highly accurate and standardized lymphoma diagnosis algorithm. In this paper, we developed an innovative deep -learning framework based on multi -model fusion, which only uses the H&E slides, with special attention to gastric Mucosa-associated lymphoid tissue (MALT) lymphoma diagnosis. The proposed framework can evaluate and improve the auxiliary ability of the convolutional neural network (CNN) in clinical practice for the diagnosis of gastric MALT lymphoma. The proposed method achieved an accuracy of 98.53% using image patches and an accuracy of 94.96% on 258 WSIs. These results show the high accuracy in the diagnosis of MALT lymphoma and its potential use in clinical practice. In addition, we also estimated the 95% confidence interval of WSIs prediction values. The result shows that the proposed framework has a high degree of differentiation in the interpretation between gastric MALT lymphoma and normal pathological tissues.

Keyword:

Artificial intelligence CNN Deep learning MALT lymphoma Model fusion

Community:

  • [ 1 ] [Quan, Jiawei]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 2 ] [Lan, Junlin]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 3 ] [Hu, Ziwei]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 4 ] [Guo, Zhechen]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 5 ] [Wang, Tao]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 6 ] [Han, Zixin]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 7 ] [Du, Ming]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 8 ] [Tong, Tong]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
  • [ 9 ] [Quan, Jiawei]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou 350108, Fujian, Peoples R China
  • [ 10 ] [Lan, Junlin]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou 350108, Fujian, Peoples R China
  • [ 11 ] [Hu, Ziwei]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou 350108, Fujian, Peoples R China
  • [ 12 ] [Guo, Zhechen]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou 350108, Fujian, Peoples R China
  • [ 13 ] [Wang, Tao]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou 350108, Fujian, Peoples R China
  • [ 14 ] [Han, Zixin]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou 350108, Fujian, Peoples R China
  • [ 15 ] [Du, Ming]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou 350108, Fujian, Peoples R China
  • [ 16 ] [Tong, Tong]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou 350108, Fujian, Peoples R China
  • [ 17 ] [Tong, Tong]Imperial Vis Technol, Fuzhou 350002, Fujian, Peoples R China
  • [ 18 ] [Ye, Jingxuan]Fujian Prov Key Lab Translat Canc Med, Fuzhou 350014, Peoples R China
  • [ 19 ] [Wang, Jianchao]Fujian Prov Key Lab Translat Canc Med, Fuzhou 350014, Peoples R China
  • [ 20 ] [Wu, Zhida]Fujian Prov Key Lab Translat Canc Med, Fuzhou 350014, Peoples R China
  • [ 21 ] [Chen, Gang]Fujian Prov Key Lab Translat Canc Med, Fuzhou 350014, Peoples R China
  • [ 22 ] [Ye, Jingxuan]Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Clin Oncol Sch, Fuzhou 350014, Fujian, Peoples R China
  • [ 23 ] [Wang, Jianchao]Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Clin Oncol Sch, Fuzhou 350014, Fujian, Peoples R China
  • [ 24 ] [Wu, Zhida]Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Clin Oncol Sch, Fuzhou 350014, Fujian, Peoples R China
  • [ 25 ] [Chen, Gang]Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Clin Oncol Sch, Fuzhou 350014, Fujian, Peoples R China
  • [ 26 ] [Tan, Tao]Macao Polytech Univ, Faulty Appl Sci, Macau 999078, Peoples R China

Reprint 's Address:

  • 童同

    [Tong, Tong]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China;;[Chen, Gang]Fujian Prov Key Lab Translat Canc Med, Fuzhou 350014, Peoples R China;;[Chen, Gang]Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Clin Oncol Sch, Fuzhou 350014, Fujian, Peoples R China

Show more details

Related Keywords:

Source :

BIOMEDICAL SIGNAL PROCESSING AND CONTROL

ISSN: 1746-8094

Year: 2024

Volume: 92

4 . 9 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:286/9551268
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1