Indexed by:
Abstract:
针对传统基于机器学习损伤识别方法手工提取特征适应性差、识别能力弱等问题,提出一种基于卷积神经网络和迁移学习的新颖、快速结构损伤识别方法.首先根据损伤特征向量特点,提出原始信号的分帧处理流程;其次考虑多传感器数据融合要求,建立多通道一维卷积神经网络结构损伤识别模型,给出模型的整体流程和网络参数;然后采集不同通道和不同噪声水平下,模拟不同位置程度损伤的15层框架数值模型加速度数据,进行损伤识别;最后将网络模型进行迁移学习,对7层框架模型试验进行损伤识别,并验证所提方法的可行性、准确性和计算复杂性.结果表明,该方法实现了特征自适应提取、损伤位置和损伤程度的精准识别,具有突出的计算效率.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2022
Issue: 04
Volume: 50
Page: 546-552
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: