Abstract:
针对目前基于深度学习的超分辨率算法特征提取较为单一、结构复杂且参数庞大的问题,提出了一种基于多层次特征提取的轻量级超分辨率重建算法。该算法采用了多层次特征提取的方式,首先提取图像的浅层特征;其次,使用包含多个并行卷积的深层特征提取模块提取图像的深层特征。设计了一种带学习权重的多尺度特征融合重建模块,以充分利用提取出的多层次信息重建图像。实验结果表明,其重建图像的峰值信噪比和结构相似性在多数情况下领先于目前主流算法;与对比算法相比,在参数量和运算时间上均保持领先,证明了网络的轻量化特性。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
信息技术与网络安全
ISSN: 2096-5133
CN: 10-1543/TP
Year: 2022
Issue: 05
Volume: 41
Page: 38-44
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8