Indexed by:
Abstract:
The preparation of palladium-based catalysts with both high catalytic activity and hydrothermal stability currently appears as a critical topic in methane combustion. Herein, we propose a facile strategy to boost the performance of SnO2-CeO2binary oxide supported palladium catalysts by tuning the composition of supports. The coexistence of SnO2and CeO2phases in an appropriate ratio is favorable for the formation of both PdxCe1-xO2-δand PdxSn1-xO2-δsolid solutions due to the reduced crystallite size. This unique microstructure could enhance the metal-support interaction to stabilize the active PdO phase and promote its reoxidation, meanwhile generating more oxygen vacancies to improve the reducibility of PdO. On account of the facilitated conversion of PdO ↔ Pd, coupled with the low-temperature dissociation of methane promoted by abundant active oxygen species, the Pd/5Sn5Ce catalyst exhibits a superior catalytic activity with a T99of ca. 360 °C, a robust stability under both dry and wet conditions, and an excellent thermal stability during heating-cooling light-off tests. © 2022 American Chemical Society. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
ACS Applied Materials and Interfaces
ISSN: 1944-8244
Year: 2022
Issue: 14
Volume: 14
Page: 16233-16244
9 . 5
JCR@2022
8 . 5 0 0
JCR@2023
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: