Indexed by:
Abstract:
A NiCo2O4 catalyst was evaluated for CO + NO reaction under a photo-thermal synergistic effect. Compared with crystalline samples, metastable NiCo2O4 with a crystalline/amorphous heterostructure exhibited higher catalytic activity due to its better low temperature reducibility and more oxygen vacancies (VOs). The collective TPR, XPS, and in-situ DRIFTS results revealed that more VOs induced by CO directly interacting with the lattice oxygen of NiCo2O4 could promote NO adsorption and activation, and visible light irradiation further reinforced the above processes by facilitating CO to capture lattice oxygen and enriching electrons in VOs. With the increase in re -action temperature, the electron-rich VOs could further drive NO dissociation into N-2. Herein, the VOs was not only an active center of catalytic reaction, but also acted as a bridge between CO and NO for lattice oxygen circulation. Thus, a photo-thermal synergistic effect for NO reduction by CO occurred over metastable NiCo2O4.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2022
Volume: 304
2 2 . 1
JCR@2022
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 26
SCOPUS Cited Count: 29
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: