Indexed by:
Abstract:
The industrial manufacture of ammonia (NH3) using Fe-based catalyst works under rigorous conditions. For the goal of carbon-neutrality, it is highly desired to develop advanced catalyst for NH3 synthesis at mild conditions to reduce energy consumption and CO2 emissions. However, the main challenge of NH3 synthesis at mild conditions lies in the dissociation of steady N N triple bond. In this work, we report the design of subnanometer Ru clusters (0.8 nm) anchored on the hollow N-doped carbon spheres catalyst (Ru-SNCs), which effectively promotes the NH3 synthesis at mild conditions via an associative route. The NH3 synthesis rate over Ru-SNCs (0.49% (mass) Ru) reaches up to 11.7 mmol NH3 (g cat)(-)(1).h(-1) at 400 degrees C and 3 MPa, which is superior to that of 8.3 mmol NH3.(g cat)(-1).h(-1) over Ru nanoparticle catalyst (1.20% (mass) Ru). Various characterizations show that the N2H4 species are the main intermediates for NH3 synthesis on Ru-SNCs catalyst. It demonstrates that Ru-SNCs catalyst can follow an associative route for N-2 activation, which circumvents the direct dissociation of N-2 and results in highly efficient NH3 synthesis at mild conditions. (C) 2022 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHINESE JOURNAL OF CHEMICAL ENGINEERING
ISSN: 1004-9541
CN: 11-3270/TQ
Year: 2022
Volume: 43
Page: 177-184
3 . 8
JCR@2022
3 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: