Abstract:
针对传统的裂缝检测方法存在裂缝样本数量少、检测效率低下、准确率不高等问题,本文提出了一种迁移学习与VGG16深度神经网络相结合的新型裂缝检测方法。该检测方法主要包括三个步骤:首先将获取的裂缝图像进行缩放、裁剪、翻转等预处理来进行数据集的增强;其次在Image Net数据集上进行网络的预训练,并将VGG16深度神经网络作为基础网络,将预训练的权重迁移到建筑物裂缝数据集进行训练;最后对训练好的网络进行测试。实验结果表明,该方法在建筑物裂缝数据集上的准确率达到92.20%,相较于只使用VGG16深度网络,其准确率提高了2.06%。研究表明,采用基于VGG16深度神经网络与迁移学习相结合的裂缝检测方法...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福建建设科技
ISSN: 1006-3943
CN: 35-1165/TU
Year: 2022
Issue: 01
Volume: 5
Page: 19-22,60
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: