Indexed by:
Abstract:
文档级别情感分类旨在预测用户对评论文本的情感极性标签。最近研究发现,利用用户和产品信息能有效地提升情感分类性能,然而,现有大多数研究只关注用户与评论、产品与评论的信息,忽略了用户与用户、产品与产品之间的内在关联,因此,本文提出一种融合图卷积神经网络的文本情感分类模型。首先,根据数据集构建了用户与用户关系图、用户与产品关系图;然后,融合两种关系图形成异质图,并使用图卷积神经网络学习用户与用户、产品与产品之间的内在联系,获得更好的用户和产品表示;最后,使用融合CNN的用户注意力和产品注意力机制的分层网络进行情感分类。实验结果表明,在公开数据集IMDB、Yelp2013和Yelp2014上,本文提出...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
山东大学学报(理学版)
ISSN: 1671-9352
CN: 37-1389/N
Year: 2021
Issue: 11
Volume: 56
Page: 15-23,30
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0