Indexed by:
Abstract:
本发明涉及一种基于图卷积神经网络的视角级文本情感分类系统及方法,包括:文本预处理模块,用于对视角级文本进行特征化处理;文本语义信息获取模块,用于捕获文本的双向语义依赖关系;注意力编码模块,用于捕获文本单词序列的全局内部相关性,并进行进一步信息整合;图卷积神经网络模块,将GCN直接作用于句子依存关系树来建模句子结构,可将上下文和依赖信息从观点词传播到视角词;情感类别输出模块,用分类函数得到文本最终的情感分类结果。本发明可以有效发挥图卷积网络的作用,能够利用图卷积神经网络通过语义依赖树来建模句子结构,得到更好的文本情感特征表示。
Keyword:
Reprint 's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202110913656.2
Filing Date: 2021-08-10
Publication Date: 2023-11-17 00:00:00
Pub. No.: CN113641820B
公开国别: 中国
Applicants: 福州大学
Legal Status: 授权
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: