• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

林凯 (林凯.) [1] | 卢宇 (卢宇.) [2] | 陈星 (陈星.) [3] | 林兵 (林兵.) [4]

Indexed by:

PKU CSCD

Abstract:

目前自动驾驶推理任务调度中要解决的关键问题是如何在不同的时间窗内,让实时推理任务满足可容忍时间约束的前提下,在相应的处理设备上被调度执行完成.在不同时间窗内,依据边缘节点的数量变化以及推理任务的不同,设计了一种边缘环境下基于强化学习算法的工作流调度策略.首先,利用推理任务工作流调度算法计算任务的完成时间;其次,采用基于模拟退火的Q学习算法(Q-learning based on simulated annealing,SA-QL)来优化推理任务的完成时间;最后,从可行性、收敛性、有效性和探索性四个角度来体现基于模拟退火的强化学习算法(Reinforement learning based on simulated annealing,SA-RL)和粒子群优化算法(Particle Swarm Optimization,PSO)的性能差异.实验结果表明,模拟退火的强化学习算法和粒子群优化算法都具有可行性和有效性,单步时序差分算法(TD(0))具有更强的探索性,多步时序差分算法(TD(λ))具有更强的收敛性.

Keyword:

工作流调度 强化学习 自动驾驶 边缘计算

Community:

  • [ 1 ] [林凯]福建师范大学
  • [ 2 ] [卢宇]福建师范大学
  • [ 3 ] [陈星]福州大学
  • [ 4 ] [林兵]福建师范大学

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

小型微型计算机系统

ISSN: 1000-1220

CN: 21-1106/TP

Year: 2021

Issue: 3

Volume: 42

Page: 632-639

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:83/10050036
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1