Indexed by:
Abstract:
目前自动驾驶推理任务调度中要解决的关键问题是如何在不同的时间窗内,让实时推理任务满足可容忍时间约束的前提下,在相应的处理设备上被调度执行完成.在不同时间窗内,依据边缘节点的数量变化以及推理任务的不同,设计了一种边缘环境下基于强化学习算法的工作流调度策略.首先,利用推理任务工作流调度算法计算任务的完成时间;其次,采用基于模拟退火的Q学习算法(Q-learning based on simulated annealing,SA-QL)来优化推理任务的完成时间;最后,从可行性、收敛性、有效性和探索性四个角度来体现基于模拟退火的强化学习算法(Reinforement learning based on...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
小型微型计算机系统
ISSN: 1000-1220
CN: 21-1106/TP
Year: 2021
Issue: 03
Volume: 42
Page: 632-639
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: