Indexed by:
Abstract:
在无人机巡检图像中,检测出绝缘子是实现输电线路状态分析的关键.本研究采用轻量级卷积神经网络代替传统的人工特征提取器,获取输入图像的深层特征;利用深度学习目标检测网络对所提取特征进行处理和训练学习,实现多尺度、多种类的绝缘子目标检测.实验结果表明:该方法可以准确快速地识别出以山林背景为主的瓷质和复合两类绝缘子,其检测精度分别达到96.29%和90.85%,且整体检测速度高达43 F·s~(-1),有效满足电力巡线中的绝缘子实时检测要求.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2021
Issue: 02
Volume: 49
Page: 196-202
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: