Query:
学者姓名:江灏
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
The low voltage direct current (LVdc) system effectively integrates renewable energy sources and diverse dc loads. It eliminates unnecessary energy conversion steps between dc distribution units and ac grids, thereby enhancing energy efficiency. In LVdc systems, voltage source converters (VSCs) serve as vital interfaces for converting energy between ac and dc systems, however, their capability on dc fault ride-through is usually lacked. Furthermore, the existing dc circuit breakers struggle to reliably isolate faults before VSCs blocked, thereby compromising VSC safety. To address these issues, this article introduces a novel topology self-adjusted fault current limiter (NSAFCL). In normal operating mode, the impedance of NSAFCL is controlled in a parallel state, and a bias power with adaptable output is designed to bypass NSAFCL, minimizing its influence during normal operation. In fault mode, the impedance of NSAFCL is controlled in a series state, and a current limiting resistor is introduced, shaving the fault current and maintaining the fault voltage. Finally, the simulation and experiment are conducted to verify the feasibility of NSAFCL, and results demonstrate that compared to traditional schemes, the proposed NSAFCL offers extended current limitations, prevents VSC blocking, and reduces the peak fault current by 70%.
Keyword :
Active fault current limiter Active fault current limiter Circuit faults Circuit faults dc fault ride-through dc fault ride-through fault current limitation fault current limitation Fault currents Fault currents Impedance Impedance Inductors Inductors Limiting Limiting Power conversion Power conversion Topology Topology voltage source converter (VSC) voltage source converter (VSC) VSC-low voltage direct current (LVdc) distribution VSC-low voltage direct current (LVdc) distribution
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Miao, Xiren , Fu, Minyi , Lin, Baoquan et al. A Novel Topology Self-Adjusted Fault Current Limiter for VSC-LVDC Systems [J]. | IEEE TRANSACTIONS ON POWER ELECTRONICS , 2024 , 39 (7) : 8597-8609 . |
MLA | Miao, Xiren et al. "A Novel Topology Self-Adjusted Fault Current Limiter for VSC-LVDC Systems" . | IEEE TRANSACTIONS ON POWER ELECTRONICS 39 . 7 (2024) : 8597-8609 . |
APA | Miao, Xiren , Fu, Minyi , Lin, Baoquan , Liu, Xiaoming , Jiang, Hao , Chen, Jing . A Novel Topology Self-Adjusted Fault Current Limiter for VSC-LVDC Systems . | IEEE TRANSACTIONS ON POWER ELECTRONICS , 2024 , 39 (7) , 8597-8609 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Thermal state parameters (TSPs) prediction is a significant technique for insulation aging assessment and fault warning of ultra-high voltage (UHV) transformers. However, the existing forecasting methods focus on high-dimensional time series analysis to build data-driven models, and fail to take the potential spatial variation law of the inside temperature into account. Thus, a spatial-temporal features mining based prediction method for TSPs in UHV transformers is proposed. First, the combined feature screening strategy is used to find the optimal feature subset from multi-source data. Second, based on optimal feature subset and correlation coefficient of TSPs, the spatial-temporal graph data for TSPs prediction is constructed. Finally, the dual adaptive graph convolution gate current unit (DA-GCGRU) model is established. The node adaptive module is used to strengthen the fitting of temperature trends in different parts of the fuel tank to adapt to specific temperature rise trends. The graph adaptive module is used to learn the spatial temperature distribution correlation of TSPs to infer the spatial mapping relationship. The results show that the method has good robustness and generalization by deeply mining the spatial-temporal characteristics of the internal parameters in UHV transformers and precisely forecasting the winding and top oil temperature. ©2024 Chin.Soc.for Elec.Eng.
Keyword :
Convolution Convolution Forecasting Forecasting Oil filled transformers Oil filled transformers Oil tanks Oil tanks Thermal insulation Thermal insulation Time series analysis Time series analysis Transformer windings Transformer windings UHV power transmission UHV power transmission Winding Winding
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Weiqing , Miao, Xiren , Xiao, Sa et al. Forecasting Method for Thermal State Parameters in Ultra-high Voltage Transformers Based on Spatial-temporal Features Mining [J]. | Proceedings of the Chinese Society of Electrical Engineering , 2024 , 44 (4) : 1649-1661 . |
MLA | Lin, Weiqing et al. "Forecasting Method for Thermal State Parameters in Ultra-high Voltage Transformers Based on Spatial-temporal Features Mining" . | Proceedings of the Chinese Society of Electrical Engineering 44 . 4 (2024) : 1649-1661 . |
APA | Lin, Weiqing , Miao, Xiren , Xiao, Sa , Jiang, Hao , Lu, Yanzhen , Qiu, Xinghua et al. Forecasting Method for Thermal State Parameters in Ultra-high Voltage Transformers Based on Spatial-temporal Features Mining . | Proceedings of the Chinese Society of Electrical Engineering , 2024 , 44 (4) , 1649-1661 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Fault detection of electrical poles is part of the daily operation of power utilities to ensure the sustainability of power transmission. This paper develops a method for intelligent detection of fallen poles based on the improved YOLOX. The hyper-parameters in this method are optimized automatically by Particle Swarm Optimization (PSO) including batch size and input resolution. During parameter optimization, a specific comprehensive evaluation metric is presented as the fitness function to obtain optimal solutions with low labor cost and high method performance. In addition, virtual pole images are generated by 3D Studio Max to overcome the imbalance problem of normal and fault data. The results show that the proposed method can achieve 95.7% of recall and 98.9% of precision, which demonstrates the high accuracy of the method in fallen pole detection. In the comparative experiment, the proposed PSO-YOLOX method is superior to the existing methods including original YOLOX and Faster R-CNN, which verifies the effectiveness of automatic optimization and virtual data augmentation.
Keyword :
Fallen poles detection Fallen poles detection Particle Swarm Optimization (PSO) Particle Swarm Optimization (PSO) UAV inspection UAV inspection YOLOX YOLOX
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Jiang, Hao , Wang, Ben , Wu, Li et al. Fallen detection of power distribution poles in UAV inspection using improved YOLOX with particle swarm optimization [J]. | MULTIMEDIA TOOLS AND APPLICATIONS , 2024 . |
MLA | Jiang, Hao et al. "Fallen detection of power distribution poles in UAV inspection using improved YOLOX with particle swarm optimization" . | MULTIMEDIA TOOLS AND APPLICATIONS (2024) . |
APA | Jiang, Hao , Wang, Ben , Wu, Li , Chen, Jing , Liu, Xinyu , Miao, Xiren . Fallen detection of power distribution poles in UAV inspection using improved YOLOX with particle swarm optimization . | MULTIMEDIA TOOLS AND APPLICATIONS , 2024 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Sensor faults in nuclear power plants (NPPs) have the potential to propagate negative impacts on system stability, leading to false alarms and accident misdiagnosis. Existing methods seldom concurrently consider complex spatial–temporal correlations among multi-type sensors in the primary circuit. This study presents a novel sensor fault detection and isolation scheme named the knowledge-guided spatial–temporal model (KGSTM), using the knowledge-guided recurrent unit (KGRU) and the concurrent detection strategy. To organically express part and whole interdependencies from inherent sensor layout, several graphs are specifically designed with pertinent domain knowledge. KGRU consists of the multi-graph convolutional network (MGCN) for fusing various spatial information and the gate recurrent unit (GRU) for extracting dynamic temporal features, further obtaining precise reconstructed signals and residuals. The concurrent detection strategy can explicitly quantify abnormal behaviors to detect and isolate faulty sensors by characterizing spatial–temporal signal variation. Numerical results on two real-world datasets from a pressurized water reactor (PWR) with simulated faults illustrate that the KGSTM has superior performance over various state-of-the-art methods in terms of signal reconstruction and fault detection. © 2024 Elsevier B.V.
Keyword :
Convolution Convolution Domain Knowledge Domain Knowledge Fault detection Fault detection Nuclear energy Nuclear energy Nuclear fuels Nuclear fuels Nuclear power plants Nuclear power plants Numerical methods Numerical methods Pressurized water reactors Pressurized water reactors Signal reconstruction Signal reconstruction System stability System stability
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lin, Weiqing , Miao, Xiren , Chen, Jing et al. Fault detection and isolation for multi-type sensors in nuclear power plants via a knowledge-guided spatial–temporal model [J]. | Knowledge-Based Systems , 2024 , 300 . |
MLA | Lin, Weiqing et al. "Fault detection and isolation for multi-type sensors in nuclear power plants via a knowledge-guided spatial–temporal model" . | Knowledge-Based Systems 300 (2024) . |
APA | Lin, Weiqing , Miao, Xiren , Chen, Jing , Ye, Mingxin , Xu, Yong , Liu, Xinyu et al. Fault detection and isolation for multi-type sensors in nuclear power plants via a knowledge-guided spatial–temporal model . | Knowledge-Based Systems , 2024 , 300 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Safety monitoring of power operations in power stations is crucial for preventing accidents and ensuring stable power supply. However, conventional methods such as wearable devices and video surveillance have limitations such as high cost, dependence on light, and visual blind spots. WiFi-based human pose estimation is a suitable method for monitoring power operations due to its low cost, device-free, and robustness to various illumination conditions. In this paper, a novel Channel State Information (CSI)-based pose estimation framework, namely PowerSkel, is developed to address these challenges. PowerSkel utilizes self-developed CSI sensors to form a mutual sensing network and constructs a CSI acquisition scheme specialized for power scenarios. It significantly reduces the deployment cost and complexity compared to the existing solutions. To reduce interference with CSI in the electricity scenario, a sparse adaptive filtering algorithm is designed to preprocess the CSI. CKDformer, a knowledge distillation network based on collaborative learning and self-attention, is proposed to extract the features from CSI and establish the mapping relationship between CSI and keypoints. The experiments are conducted in a real-world power station, and the results show that the PowerSkel achieves high performance with a PCK@50 of 96.27%, and realizes a significant visualization on pose estimation, even in dark environments. Our work provides a novel low-cost and high-precision pose estimation solution for power operation. IEEE
Keyword :
channel state information channel state information deep learning deep learning Electric power operation safety Electric power operation safety Feature extraction Feature extraction human pose estimation human pose estimation Monitoring Monitoring Pose estimation Pose estimation Power generation Power generation Safety Safety Sensors Sensors WiFi sensing WiFi sensing Wireless fidelity Wireless fidelity
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yin, C. , Miao, X. , Chen, J. et al. PowerSkel: A Device-Free Framework Using CSI Signal for Human Skeleton Estimation in Power Station [J]. | IEEE Internet of Things Journal , 2024 , 11 (11) : 1-1 . |
MLA | Yin, C. et al. "PowerSkel: A Device-Free Framework Using CSI Signal for Human Skeleton Estimation in Power Station" . | IEEE Internet of Things Journal 11 . 11 (2024) : 1-1 . |
APA | Yin, C. , Miao, X. , Chen, J. , Jiang, H. , Yang, J. , Zhou, Y. et al. PowerSkel: A Device-Free Framework Using CSI Signal for Human Skeleton Estimation in Power Station . | IEEE Internet of Things Journal , 2024 , 11 (11) , 1-1 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
In the field of multi-style textile defect detection, a common challenge is the difficulty of adapting the inherent detection model to different styles of textile defects. Changes in the color or style of the textile often result in a decrease in the accuracy of defect detection. Relying solely on the model for fine-tuning inspections can lead to catastrophic forgetting, which significantly impacts the performance of the textile defect detector. To address these challenges, a multi-task correlation distillation (MTCD) anomaly detection method based on knowledge distillation and representative sampling is proposed to detect multi-style textile defects. To enable MTCD to detect defects of new-style textiles while maintaining the detection of old-style textiles, two main modules are introduced. The distillation adaptation module (DAM) explores the intra-feature correlation in the feature space of the target detector, allowing the student model to acquire knowledge of new-style textile defect detection while inheriting the teacher model's detection ability for old-style textile defects. The representative sampling module (RSM) stores representative knowledge of textile defect detection for old-style textiles, facilitating the transfer of knowledge learned from detecting new-style textile defect styles and maintaining the ability to detect defects in old-style textiles. This increases the detection accuracy of the student model for new-style textile defects. The results show that the proposed MTCD method can adapt to the new textile defect detection while maintaining the accuracy of the old textile defect detection and avoiding the problem of catastrophic forgetting. Furthermore, it offers a better balance between stability and plasticity, making it a promising solution for defect detection of multi-style textiles in industrial production environments. © 2024 SPIE and IS&T.
Keyword :
Anomaly detection Anomaly detection Defects Defects Distillation Distillation Knowledge management Knowledge management Textiles Textiles
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Jiang, Hao , Huang, Shicong , Jin, Zhiheng et al. Multi-style textile defect detection using distillation adaptation and representative sampling [J]. | Journal of Electronic Imaging , 2024 , 33 (3) . |
MLA | Jiang, Hao et al. "Multi-style textile defect detection using distillation adaptation and representative sampling" . | Journal of Electronic Imaging 33 . 3 (2024) . |
APA | Jiang, Hao , Huang, Shicong , Jin, Zhiheng , Zhang, Minggui , Chen, Jing , Miao, Xiren . Multi-style textile defect detection using distillation adaptation and representative sampling . | Journal of Electronic Imaging , 2024 , 33 (3) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
超宽带(Ultra-Wideband, UWB)技术在室内外定位中应用广泛,针对传统多基站定位方案的局限性,提出了一种基于超宽带信号到达相位差(Ultra-Wideband Phase Difference of Arrival, UWB-PDOA)的少基站自适应定位系统。该系统利用UWB-PDOA技术和基于ESP32信号强度的权重自适应定位技术,大幅降低了对环境部署的依赖性,提高了定位的精度和稳定性。结合环境先验信息和目标高度的先验知识,构建了先验知识库,采用自适应定位技术,利用多个传感器的信息来调整对不同定位基站的置信度权重,进一步提高了定位精度和鲁棒性。实验结果表明,所提出的系统在视距(Line of Sight, LOS)和非视距(Non Line of Sight, NLOS)环境下都具有较高的定位精度和稳定性,并且仅需要不超过3个基站便可以满足室内环境定位的需求。
Keyword :
UWB-PDOA UWB-PDOA 信号强度 信号强度 少基站定位 少基站定位 自适应 自适应
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 黄鑫 , 张成炜 , 韦周旺 et al. 基于UWB-PDOA的少基站自适应定位系统研究 [J]. | 测控技术 , 2024 , 43 (05) : 85-92 . |
MLA | 黄鑫 et al. "基于UWB-PDOA的少基站自适应定位系统研究" . | 测控技术 43 . 05 (2024) : 85-92 . |
APA | 黄鑫 , 张成炜 , 韦周旺 , 江灏 . 基于UWB-PDOA的少基站自适应定位系统研究 . | 测控技术 , 2024 , 43 (05) , 85-92 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
As an important tool for current electric power patrol, UAVs show intelligence instead of traditional human patrol. In this paper, for the problem of patrol planning for transmission line towers, considering the risk factors of UAV patrol in post-disaster environments, a multi-featured risk estimation is carried out, and a multi-objective optimization model under time and risk conditions is established. Secondly, for this problem model, an improved genetic algorithm based on elite guidance (EGIGA) is used for optimization, which adopts strategies such as partial elite crossover and adaptive mutation to accelerate the convergence performance of the algorithm. Finally, the feasibility and effectiveness of the method in this paper are verified through example simulation and algorithm comparison. © 2024 SPIE.
Keyword :
elite-guided genetic algorithms elite-guided genetic algorithms multi-objective optimization multi-objective optimization risk estimation risk estimation UAV patrol planning UAV patrol planning
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Chen, J. , Tang, Y. , Shen, B. et al. An unmanned aerial vehicle path planning method under consideration of transmission line state assessment [未知]. |
MLA | Chen, J. et al. "An unmanned aerial vehicle path planning method under consideration of transmission line state assessment" [未知]. |
APA | Chen, J. , Tang, Y. , Shen, B. , Lin, S. , Jiang, H. . An unmanned aerial vehicle path planning method under consideration of transmission line state assessment [未知]. |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
针对当前高校实验室异常用电行为,提出一种基于Stacking相异模型融合的异常行为检测方法。考虑相异基学习器挖掘实验室用电行为规律的差异性,对相异基学习器进行优选。利用随机森林作为元学习器,充分融合相异基学习器的优势,弥补各基学习器的缺陷,构建基于Stacking相异模型融合的集成学习模型。通过算例对比分析,验证了基于Stacking相异模型融合的集成学习模型能有效提升单一分类器的异常检测效果,在准确率、F_1分数、ROC曲线下面积和误检率上均优于Bagging、Voting、Adaboost等集成学习方法并能适应样本不平衡的情况。
Keyword :
Stacking结合策略 Stacking结合策略 实验室安全 实验室安全 异常用电行为 异常用电行为 集成学习 集成学习
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 陈静 , 王铭海 , 江灏 et al. Stacking相异模型融合的实验室异常用电行为检测 [J]. | 实验室研究与探索 , 2024 , 43 (01) : 231-237 . |
MLA | 陈静 et al. "Stacking相异模型融合的实验室异常用电行为检测" . | 实验室研究与探索 43 . 01 (2024) : 231-237 . |
APA | 陈静 , 王铭海 , 江灏 , 缪希仁 , 陈熙 , 郑垂锭 . Stacking相异模型融合的实验室异常用电行为检测 . | 实验室研究与探索 , 2024 , 43 (01) , 231-237 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
In this article, we proposed a distortion-tolerant method for fiber Bragg grating (FBG) sensor networks based on the estimation of distribution algorithm (EDA) and convolutional neural network (CNN). Addressing the parameter reconstruction of the reflection spectrum, an objective function is formulated to pinpoint the Bragg wavelength detection problem, with the optimal solution acquired via EDA. By incorporating spectral distortion into the objective function, the EDA-based method effectively manages distorted spectrums, ensuring the fidelity of wavelength data. Further, CNN aids in extracting features from the entire FBG sensor network's wavelength information, facilitating the creation of the localization model. By sending the reliable wavelength data obtained by EDA to the trained model, swift identification of the load position is achieved. Testing revealed that under conditions of spectral distortion, EDA can adeptly detect the Bragg wavelength. Additionally, the CNN-trained localization model outperforms other machine-learning techniques. Notably, experimental results demonstrate that the proposed EDA surpasses the second-ranked method, i.e., the maximum method, achieving a root mean square error (RMSE) of merely 1.4503 mm which is substantially lower than the 6.2463 mm achieved by the maximum method. The average localization error remains under 2 mm when 5 out of 9 FBGs' reflection spectra are distorted. Furthermore, Bragg wavelength detection error stays below 1 pm amid spectral distortion. Consequently, our method offers promising application prospects for long-term FBG sensor network monitoring, ensuring high accuracy and robustness in detecting structural damage.
Keyword :
Bragg wavelength detection Bragg wavelength detection convolutional neural network (CNN) convolutional neural network (CNN) estimation of distribution algorithm (EDA) estimation of distribution algorithm (EDA) fiber Bragg grating (FBG) sensor network fiber Bragg grating (FBG) sensor network Fiber gratings Fiber gratings Load modeling Load modeling Location awareness Location awareness Optical distortion Optical distortion Reflection Reflection Reliability Reliability spectral distortion spectral distortion Strain Strain
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Luo, Yuemei , Huang, Chenxi , Lin, Chaohui et al. Distortion Tolerant Method for Fiber Bragg Grating Sensor Network Using Estimation of Distribution Algorithm and Convolutional Neural Network [J]. | IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT , 2024 , 73 . |
MLA | Luo, Yuemei et al. "Distortion Tolerant Method for Fiber Bragg Grating Sensor Network Using Estimation of Distribution Algorithm and Convolutional Neural Network" . | IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 73 (2024) . |
APA | Luo, Yuemei , Huang, Chenxi , Lin, Chaohui , Li, Yuan , Chen, Jing , Miao, Xiren et al. Distortion Tolerant Method for Fiber Bragg Grating Sensor Network Using Estimation of Distribution Algorithm and Convolutional Neural Network . | IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT , 2024 , 73 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |