Indexed by:
Abstract:
针对旋转机械设备故障特征提取困难的问题,提出一种熵-流特征和樽海鞘群优化支持向量机(salp swarm optimization support vector machine, SSO-SVM)的故障诊断方法。利用改进多尺度加权排列熵(improved multiscale weighted permutation entropy, IMWPE)提取机械设备不同工况下的故障特征;采用监督等度规映射(S-Isomap)流形学习进行降维处理,获取低维的熵-流特征集;将熵-流特征输入至SSO-SVM多故障分类器进行识别与诊断。行星齿轮箱故障诊断实验分析结果表明:IMWPE+S-Isomap熵-流特...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
振动与冲击
ISSN: 1000-3835
CN: 31-1316/TU
Year: 2021
Issue: 06
Volume: 40
Page: 107-114
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: