Indexed by:
Abstract:
MIL-53(Fe) was synthesized using a "modulator approach" that utilizes acetic acid (HAc) as an additive to control the size and morphology of the resulting crystals. We demonstrate that after activation under vaccum at 100 degrees C, the MIL-53(Fe) functions well for H2S selective oxidation. The introduction of acetic acid in the presence of benzene-1,4-dicarboxylic acid (H2BDC) would result in a series of MIL-53(Fe) nanocrystals (denoted as MIL-53(Fe)-xH, x stands for the volume of added HAc with morphology evoluting from irregular particles to short hexagonal columns. The vacuum treatment facilitates the removal of acetate groups, thus generating Fe3+ Lewis acid sites. Consequently, the resulted MIL-53(Fe)-xH exhibits good catalytic activity (98% H2S conversion and 92% sulfur selectivity) at moderate reaction temperatures (100-190 degrees C). The MIL-53(Fe)-5H is superior to the traditional iron-based catalysts, showing stable performance in a test period of 55 h. (C) 2021, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHINESE JOURNAL OF CATALYSIS
ISSN: 0253-9837
CN: 21-1601/O6
Year: 2021
Issue: 2
Volume: 42
Page: 279-287
1 2 . 9 2
JCR@2021
1 5 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 44
SCOPUS Cited Count: 45
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: