• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhao, Yulai (Zhao, Yulai.) [1] (Scholars:赵玉来) | Zhao, Zhikui (Zhao, Zhikui.) [2] | Zhu, Zhongzheng (Zhu, Zhongzheng.) [3] | Wang, Anjun (Wang, Anjun.) [4] | Hou, Linxi (Hou, Linxi.) [5] (Scholars:侯琳熙)

Indexed by:

SCIE

Abstract:

Heteroatom doped porous carbon materials have great application prospects in supercapacitors. In the present study, an approach of preparing N-doped porous carbon (NPC) was proposed from porous poly(resorcinolformaldehyde-melamine) monoliths which were prepared by high internal phase emulsion (HIPE) template. Melamine was dissolved in the external phase and copolymerized, acting as the N source and porous structure regulator to provide micropore-dominant NPCs. The structure, morphology, specific surface area (SSA), and chemical composition of the samples were systematically studied. With melamine content increasing, N-doping content in NPC increased while the SSA of NPC increased at first and then decreased. When the content of N is 8.42 wt%, the obtained NPC showed the highest SSA of about 1670 m2 g-1. Furthermore, high N doping content could improve the electronic conductivity and provide additional pseudocapacitance of NPC. Under the combined influences of proper N content and high porosity, the prepared NPC electrodes revealed excellent specific capacitance (228.0 F g-1 at 1.0 A g-1), favorable circling stability, and prominent rate capability in a threeelectrode system with 6 M KOH solution as the electrolyte.

Keyword:

High internal phase emulsion Melamine N-doped porous carbon Supercapacitor

Community:

  • [ 1 ] [Zhao, Yulai]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 2 ] [Zhao, Zhikui]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 3 ] [Zhu, Zhongzheng]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 4 ] [Wang, Anjun]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 5 ] [Hou, Linxi]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China

Reprint 's Address:

  • 赵玉来 侯琳熙

    [Zhao, Yulai]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China;;[Hou, Linxi]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China

Show more details

Related Keywords:

Source :

PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL

ISSN: 1002-0071

CN: 10-1147/N

Year: 2021

Issue: 2

Volume: 31

Page: 270-278

4 . 2 6 9

JCR@2021

4 . 8 0 0

JCR@2023

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:142

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:89/10051135
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1