Indexed by:
Abstract:
Shells are attractive and efficient structures that play a special role for engineers and architects. However, only few bridges supported by concrete shells have been designed and built after the Musmeci's bridge in Potenza (Italy). Several numerical form-finding methods have been implemented in the last decades to optimize the shape of shells. In the present paper, a comparison of the Thrust Network Analysis (TNA) and Particle-Spring System (PS) is made by searching the optimal shape of a concrete shell supporting the curved cantilevered deck of a pedestrian bridge under the same boundary conditions. Finite Element Analysis was performed to compare the structural behaviour of the footbridges optimized by the two different form-finding techniques. The effectiveness of both form-finding methods in minimizing unfavourable tensile stresses in concrete shells, thus taking advantage of mechanical properties of concrete, is investigated. Furthermore, transverse deflections of the curved cantilevered deck were reduced introducing an external prestressing system applied to the upper flange of the ring box girder. Finally, the obtained results can help architecture and engineering practitioners to develop innovative bridge conceptual design.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
STRUCTURAL ENGINEERING INTERNATIONAL
ISSN: 1016-8664
Year: 2021
Issue: 4
Volume: 31
Page: 527-535
1 . 1 8 2
JCR@2021
1 . 1 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:105
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: