Indexed by:
Abstract:
本文证明了自正则化Davis大数律和重对数律的精确渐近性,即 定理1设EX=0,且EX^2Ⅰ(|X|≤x)在无穷远处是缓变函数,则limε→0ε^2∑n≥3 1/n log n P(Sn/Vn)≥ε√log log n)=1 定理2设EX=0,且EX^2Ⅰ(|X|≤x)在无穷远处是缓变函数,则对0≤δ≤1,有limε→0 ε^2δ+2∑n≥1 (log n)^δ/n P(|Sn/Vn|≥ε√log n)=1/δ+1E|N|^2δ+2,其中N为标准正态随机变量。
Keyword:
Reprint 's Address:
Email:
Source :
应用概率统计
ISSN: 1001-4268
Year: 2007
Issue: 2
Volume: 23
Page: 174-178
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 2
Affiliated Colleges: