Indexed by:
Abstract:
本文证明了自正则化Davis大数律和重对数律的精确渐近性,即定理1 设EX=0,且EX2I(|x|≤x)在无穷远处是缓变函数,则limε2ε↘0∑n≥31/nlog nP(|Sn/Vn|≥ε√loglogn)=1.定理2 设EX=0,且EX2I(|x|≤x)在无穷远处是缓变函数,则对0≤δ≤1,有kimε2δ+2ε↘0∑n≥1(logn)δ/nP(|Sn/Vn|≥ε√logn)=1/δ+1E|N|2δ+2其中N为标准正态随机变量.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
应用概率统计
ISSN: 1001-4268
CN: 31-1256/O1
Year: 2007
Issue: 2
Volume: 23
Page: 174-178
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: