Indexed by:
Abstract:
以提高短期负荷预测中的时刻峰值精度为目标。为了给电力调度部门提供各时刻负荷分配的极限值,以一天中24个时刻的负荷峰值代替一天96点的负荷作为研究对象,并且在支持向量机的回归拟合(SVR)基本算法基础上,提出了一种SVR预测值经过累积式自回归—移动平均模型(ARIMA)的卡尔曼滤波调整的短期负荷预测模型。该模型利用ARIMA模型建立卡尔曼滤波方程;并将SVR预测值作为观测值,通过卡尔曼滤波的递推方程组,求得最终的负荷预测值,从而实现卡尔曼滤波-SVR预测。经过实例验证该模型可以有效提高短期负荷预测的精度。
Keyword:
Reprint 's Address:
Email:
Source :
电气开关
ISSN: 1004-289X
Year: 2016
Issue: 2
Volume: 54
Page: 35-38
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 1
Affiliated Colleges: