Indexed by:
Abstract:
本文针对短期负荷预测动态、随机的特点,提出了一种基于优化权重的卡尔曼滤波与无偏灰色组合预测模型.该模型充分发挥了卡尔曼滤波准确估计动态系统的优势,并合理利用无偏灰色模型挖掘随机数据潜在规律的特点.首先根据卡尔曼滤波预测中出现特殊日收敛不足的缺陷,利用趋势稳定,规律性强,消除固有偏差的无偏灰色理论加以弥补.根据无偏灰色理论趋势稳定向上,在短期负荷预测中某些下降趋势数据点误差较大的缺陷,利用卡尔曼滤波依据大量数据最优估计的平均思想加以弥补.并且采用线性组合法进行结合进一步规避了预测风险.算例结果表明,该预测模型精度较高,具有实用性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电气技术
ISSN: 1673-3800
CN: 11-5255/TM
Year: 2017
Issue: 9
Page: 19-23
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: