Indexed by:
Abstract:
针对传统ML-KNN进行多标签文档分类时,忽略标签之间关联性的问题,笔者提出了一种基于改进的ML-KNN多标签微博短文本分类方法。该方法通过归一化互信息控制每对标签的相关性阈值。针对微博短文本的特征,在计算文本相似度时引入同义词词林进行语义特征扩展。通过数据集的实验测试,笔者所提方法在性能上优于传统的ML-KNN算法。
Keyword:
Reprint 's Address:
Email:
Source :
信息与电脑
ISSN: 1003-9767
Year: 2018
Issue: 7
Volume: 0
Page: 42-44
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 0
Affiliated Colleges: