• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

彭周宁 (彭周宁.) [1] | 林培杰 (林培杰.) [2] | 赖云锋 (赖云锋.) [3] | 程树英 (程树英.) [4] | 陈志聪 (陈志聪.) [5]

Indexed by:

CQVIP

Abstract:

随着大规模的光伏发电接入电网,其输出的随机性和波动性给电网调度管理带来巨大的挑战。基于此,本文提出了一种同时考虑统计(历史光伏输出功率)和物理(历史和未来的气象信息)变量的混合灰色关联分析-广义回归神经网络预测模型。首先,计算多元气象因子与光伏发电功率的皮尔逊相关系数,将相关系数较高的气象因子确定为建立预测模型的气象输入因子;然后,采用灰色关联分析算法计算历史日与待预测日的关联度确定最佳相似日,选取最佳相似日的光伏输出功率和气象输入因子以及待预测日的相关气象参数作为广义回归神经网络模型的输入参数,得到待预测日各个时刻输出功率的预测值;最后,利用澳大利亚DKA太阳能中心网站所提供的光伏电站历史气象数据和功率数据对所设计的模型进行训练和测试,验证模型在不同季节下的预测效果。结果表明,与所选择的对比模型相比,本文所建模型具有较好的预测性能。

Keyword:

光伏功率预测 广义回归神经网络 最佳相似日 灰色关联分析

Community:

  • [ 1 ] 福州大学物理与信息工程学院微纳器件与太阳能电池研究所,福州350116

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

电气技术

ISSN: 1673-3800

Year: 2019

Issue: 10

Volume: 20

Page: 11-18

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count: -1

30 Days PV: 2

Affiliated Colleges:

Online/Total:10/10041726
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1