Abstract:
光伏电站功率数据存在随机性和波动性的特征,研究精准的光伏电站功率预测模型成为未来电力发展中灵活的电力调度和管理的必要条件。对此提出一种基于混合DBSCAN聚类、PCA主成分分析和改进自注意力机制的光伏功率预测模型。首先采用DBSCAN聚类将分布较为分散和密集的历史数据进行分类,得到波动数据集和平稳数据集;其次利用PCA提取波动数据的主要成分序列,得到便于模型获得关键信息的时间序列;最后提取关键气象参数与具有感知上下文信息的改进自注意力机制模型进行互助式的动态建模。实验运用RMSE和MAE两个指标说明本文所提模型在每个季节下的平稳数据和波动数据都有较高的预测精度。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电气开关
ISSN: 1004-289X
CN: 21-1279/TM
Year: 2024
Issue: 01
Volume: 62
Page: 6-12
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: