Abstract:
在C~n中的有界完全Reinhardt域Ω上推广的Roper-Suffridge算子Φ(f)定义为Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)(z)=(rf(z_1/r),((rf(z_1/r))/z_1)~(β_2)(f′(z_1/r))~γ_2_(z_2,…,)((rf(z_1/r))/z_1)~(β_n)(f′(z_1/r))~(γ_n)_(z_n),其中n≥2,(z_1,z_2,…,z_n)∈Ω,r=r(Ω)=sup{|z_1|:(z_1,z_2,…,z_n)∈Ω},0≤γ_j≤1-β_j,0≤β_j≤1,这里选取幂函数的单值解析分支,使得((f(z_1))/z_1)~(β...
Keyword:
Reprint 's Address:
Email:
Source :
中国科学A辑
Year: 2007
Issue: 10
Page: 1193-1206
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: