Abstract:
重叠社区发现是近些年来社交网络分析中的一个热门课题,但大部分算法有着时间复杂度高或健壮性差的缺点。本文构造了一种节点相似度计算方法,针对FCM的缺陷提出改进,从而利用该改进的Fuzzy c-means计算出每个节点的隶属度;然后设定阈值决定每个节点的类别,实现了重叠社区发现;接下来在真实数据集上的对比实验结果表明该算法在有较低的时间复杂度同时能有效的发现网络中的重叠社区结构。
Keyword:
Reprint 's Address:
Email:
Source :
福建电脑
Year: 2013
Issue: 09
Volume: 29
Page: 107-111
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: