• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

张巧达 (张巧达.) [1] | 何振峰 (何振峰.) [2]

Abstract:

针对基于Hub的聚类算法K-hubs算法存在对初始聚类中心敏感的问题,提出一种基于Hub的初始中心选择策略.该策略充分利用高维数据普遍存在的Hubness现象,选择相距最远的K个Hub点作为初始的聚类中心.实验表明采用该策略的K-hubs算法与原来采用随机初始中心的K-hubs算法相比,前者拥有较好的初始中心分布,能够提高聚类准确率,而且初始中心所在的位置倾向于接近最终簇中心,有利于加快算法收敛.

Keyword:

Hubness 初始中心 最大最小距离方法 聚类 高维数据

Community:

  • [ 1 ] 福州大学数学与计算机科学学院

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

计算机系统应用

Year: 2015

Issue: 04

Volume: 24

Page: 171-175

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:52/10051253
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1