Indexed by:
Abstract:
针对基于Hub的聚类算法K-hubs算法存在对初始聚类中心敏感的问题,提出一种基于Hub的初始中心选择策略。该策略充分利用高维数据普遍存在的Hubness现象,选择相距最远的K个Hub点作为初始的聚类中心。实验表明采用该策略的K-hubs算法与原来采用随机初始中心的K-hubs算法相比,前者拥有较好的初始中心分布,能够提高聚类准确率,而且初始中心所在的位置倾向于接近最终簇中心,有利于加快算法收敛。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机系统应用
ISSN: 1003-3254
CN: 11-2854/TP
Year: 2015
Issue: 4
Page: 171-175
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: