Indexed by:
Abstract:
现有的生成对抗网络(Generative Adversarial Networks,GAN)损失函数已经被成功地应用在迁移学习方法中。然而,发现这种损失函数在学习过程中可能会出现梯度消失的问题。为了克服该问题,提出了一种学习领域不变特征的新方法,即最小二乘迁移生成对抗网络(Least Squares Transfer Generative Adversarial Networks,LSTGAN)。LSTGAN采用最小二乘生成对抗网络(Least Squares Generative Adversarial Networks,LSGAN)损失函数,通过单领域判别的训练方式来减少领域分布之间的差异...
Keyword:
Reprint 's Address:
Email:
Source :
计算机工程与应用
Year: 2019
Issue: 14
Volume: 55
Page: 24-31
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: