Indexed by:
Abstract:
随着卫星遥感技术的发展,越来越多的卫星观测数据被应用于预测海洋内部温盐结构信息,而如何有效提高海洋内部温盐信息的预测精度仍是一个挑战。本文应用LightGBM算法结合随机森林算法构建全球海洋次表层(0—1000 m)温度异常(STA)与盐度异常(SSA)的预测模型,模型使用海表卫星观测数据(海表高度异常(SSHA)、海表温度异常(SSTA)、海表盐度异常(SSSA)和海表风场异常水平和垂直分量(USSWA、VSSWA),结合经纬度信息(LON、LAT)作为预测变量,使用Argo次表层温盐数据作为模型训练与测试标记。本文使用五参数模型(SSTA、 SSHA、 SSSA、 USSWA、 VSSWA...
Keyword:
Reprint 's Address:
Email:
Source :
遥感学报
Year: 2020
Issue: 10
Volume: 24
Page: 1255-1269
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: