Indexed by:
Abstract:
金线莲是中国珍稀中草药,不同品系的金线莲具有细微的形态差异和显著的药效差异.针对金线莲的单一特征贡献能力不足以及传统分类器泛化能力不佳的问题,提出使用形状、颜色和纹理特征对金线莲叶片图像进行特征提取与融合,再使用表现性能更优的LightGBM(轻量级梯度提升机)构建分类器,以提高金线莲识别正确率.LightGBM具有精确高效等优点,将提取得到的高层次特征导入LightGBM进行训练预测,可以有效提高分类准确性.对金线莲数据集中的6个品系共368幅叶片图像进行试验,结果表明,相比于传统的分类方法,基于多特征融合和LightGBM的模型识别效果最好,10次随机试验的平均识别率比传统方法KNN、SVM和GBDT高,并且在分类评价指标精确率、召回率、综合评价指标上有较优表现,该研究结果可为中药材品系识别提供参考.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
江苏农业学报
ISSN: 1000-4440
Year: 2021
Issue: 1
Volume: 37
Page: 155-162
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: