Indexed by:
Abstract:
为求解高维多目标优化问题,提出一种新的适应度分配策略,即模糊关联熵方法(FREM).结合模糊信息熵理论和隶属度函数给出FREM,采用隶属度函数将Pareto解和理想解映射为模糊集,运用模糊信息熵理论处理Pareto解模糊集与理想解模糊集之间的内在关系,并进行适应度分配.以模糊关联熵系数引导群体智能算法进化.在DTLZ测试函数集上的实验结果表明,FREM能够解决高维多目标优化问题,避免子目标数量增加对算法的影响,并得到比随机权重法和NSGA-Ⅱ更好的优化效果.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机工程
ISSN: 1000-3428
CN: 31-1289/TP
Year: 2016
Issue: 6
Volume: 42
Page: 185-190,195
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: