Indexed by:
Abstract:
An improved K-SVD method based on non-noisy pixel reconstruction (PK-SVD) is proposed to filter impulse noise. In the phase of image reconstruction, non-noisy pixels are applied in the construction of optimal function to obtain the reconstructed image and improve the filtering performance, and the optimal function is solved by integrating the hierarchical property into the OMP algorithm. In the phase of dictionary training, PK-SVD uses the iterant K-singular value decomposition to renovate both atoms and their coefficients rather than fixes the coefficients. The simulation results show that compared with the other three methods, PK-SVD obtains the sparsest dictionary and the clearest image with higher peak signal to noise ratio. ©, 2014, Journal of Pattern Recognition and Artificial Intelligence. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2014
Issue: 11
Volume: 27
Page: 977-984
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: