Indexed by:
Abstract:
分层狄利克雷过程(HDP)主题模型从数据中自动学习结构最优的主题集,但往往不满足实际语义要求,而现有的一些带标签的主题模型又需要设定很难界定的参数.因此,文中在已知部分语义标签和标签确定度的基础上,分别提出半监督HDP主题模型(SLHDP)和随机簇的准确度评价指标.该模型为已知的语义标签赋予较高权重,结合狄利克雷过程有限空间无线划分的特性,并通过中国餐馆过程建模生成.在多个中英文数据集中的实验表明,在大规模数据集的文本分类中,SLHDP模型能够使主题集的构成更合理.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
模式识别与人工智能
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2017
Issue: 12
Volume: 30
Page: 1138-1148
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: