Indexed by:
Abstract:
针对目前基于主题模型的微博短文本热点话题发现存在特征稀疏、高维度以及需要人工指定主题数目等问题,提出一种基于改进突发词对主题模型(bursty biterm topic model,BBTM)的热点话题发现方法(hot topic-hot biterm topic model,H-HBTM).首先,利用词的突发概率进行特征选择,过滤非突发词.其次,结合微博文本的突发特性和传播特性计算微博词对的热值突发概率,将热值突发概率作为BBTM的先验概率.最后,利用基于密度的方法自适应选择BBTM的最优话题数目,确定最优BBTM,实现热点话题发现.在真实微博数据集上的实验表明,H-HBTM可以在不需要预先设定主题数目的情况下,自动发现最优话题模型,并且H-HBTM发现的热点话题的质量高于基于BBTM、词对主题模型以及潜在狄立克雷分配的方法.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机科学与探索
ISSN: 1673-9418
CN: 11-5602/TP
Year: 2019
Issue: 7
Volume: 13
Page: 1103-1114
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: