Indexed by:
Abstract:
提出改进的K-means聚类分割和LVQ神经网络分类的方法,用于有机发光二极管显示面板喷墨打印制程中缺陷像素的识别.首先采用改进的K-means聚类算法对预处理后的打印像素进行分割,然后采用连通域水平矩形确定每一个打印像素的坐标及几何特征,再通过灰度共生矩阵提取其纹理特征,最后通过LVQ神经网络对所述特征进行分类,完成缺陷像素的标记及分类统计.结果 表明,本文算法的识别率明显优于其他常用分类识别算法,平均缺陷检测率为100%,分类准确率达到98.9%,单像素检测时间为8.3 ms.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机与现代化
ISSN: 1006-2475
CN: 36-1137/TP
Year: 2019
Issue: 7
Page: 37-42
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: