Indexed by:
Abstract:
In this paper, the kinematics and dynamics of free-floating space manipulator systems are analyzed, and it is shown that the Jacobian matrix and the dynamic equations of the systems are nonlinearly dependent on inertial parameters. In order to overcome the above problems, the system is modeled as under-actuated robot system, and the idea of augmentation approach is adopted. It is demonstrate that the augmented generalized Jacobian matrix and the dynamic equations of the system can be linearly dependent on a group of inertial parameters. Based on the results, the robust adaptive control scheme for free-floating space manipulator with uncertain inertial parameters to track to desired trajectory in workspace is proposed, and a two-link planar space manipulator system is simulated to verify the proposed control scheme. The proposed control scheme is computationally simple, because we choose to make the controller robust to the uncertain inertial parameters rather than explicitly estimating them online. In particular, it require neither measuring the position, velocity and acceleration of the floating base with respect to the orbit nor controlling the position and attitude angle of the floating base.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Year: 2001
Volume: 6 B
Page: 1979-1984
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: