• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhang, Jiangnan (Zhang, Jiangnan.) [1] | Wei, Qiang (Wei, Qiang.) [2] | Guo, Weimin (Guo, Weimin.) [3] | Tang, Yaohua (Tang, Yaohua.) [4] | Wu, Xinghuang (Wu, Xinghuang.) [5]

Indexed by:

EI Scopus

Abstract:

In order to use remote wind power/solar energy, the scale of power grid interconnection grow rapidly. If transient stability can be increased when faults happen on tie lines, the transmission capacity can be increased too. Dynamic braking can increase transient stability by increasing deceleration area, but it's difficult to coordinate several braking devices and calculate braking amount in real time. Things are no longer so after rotor angle droop (RAD) controllers are deployed across the power system. Since all rotor angles of generators will be fixed in rotating coordination system determined by global position system (GPS) pulse per second (PPS) signal, dynamic braking amount can be calculated by RAD controller by using local speed and rotor measurement. This paper shows the revised equal area criteria (EAC) when this kind of dynamic braking is used. The relationships between RAD controller parameter (saturation threshold) and the braking effect are also investigated. Simulation results in IEEE 68 nodes system show that, by applying dynamic braking on several generators simultaneously, critical clearing time can be increased dramatically when faults happen on tie lines. © 2018 IEEE.

Keyword:

Braking Controllers Electric generators Electric power transmission networks Stability Transients Wind power

Community:

  • [ 1 ] [Zhang, Jiangnan]Department of Automation, Electric Power Research Institute of Henan Electric Power Company, SGCC, Zhengzhou, China
  • [ 2 ] [Wei, Qiang]School of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
  • [ 3 ] [Guo, Weimin]RunDian Energy Science Technology Co., Ltd., Zhengzhou, China
  • [ 4 ] [Tang, Yaohua]RunDian Energy Science Technology Co., Ltd., Zhengzhou, China
  • [ 5 ] [Wu, Xinghuang]School of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

ISSN: 2159-3442

Year: 2018

Volume: 2018-October

Page: 2319-2323

Language: English

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:146/10010210
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1