Indexed by:
Abstract:
As a hot research orientation of data stream mining, multiple data stream clustering tracks the evolution of multiple streams and partitions them according to their similarities. In this paper, a multiple data stream clustering approach is proposed, which is based on the combination of grey relational analysis and affinity propagation clustering. A grey relational degree is developed so that the raw data can be compressed into an incrementally updatable grey relational synopsis. The similarity between two data streams is measured by the grey relational degree calculated from the synopsis. Finally, the affinity propagation algorithm is used to cluster the streams. The experiments on the real data sets prove the effectiveness of the new method.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2011
Issue: 6
Volume: 24
Page: 769-775
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1