Indexed by:
Abstract:
A novel imprinting strategy using reversible covalent complexation of glycoprotein is described for creating glycoprotein-specific recognition cavities on 3-acrylamidophenylboronic acid-immobilized silica nanoparticles (SiO2@AAPBA). Two kinds of organic silanes (3- aminopropyltriethoxysilane (APTES) and n-octyltrimethoxysilane (OTMS)) were then polymerized on the surface of SiO2@AAPBA after the template (horseradish peroxidase (HRP)) was covalently immobilized by forming cyclic boronate complexes and their influence was examined. The results showed that not only the silane composition but also the relative proportions play an important role in glycoprotein imprinting. The template recognition properties were evaluated by single-protein or competitive batch rebinding experiments, and the results showed that the HRP-imprinted silica nanoparticles (HRP-MIP silica NPs) exhibited higher recognition ability and selectivity towards the template than the nonimprinted silica NPs and their corresponding imprinted factor (a) reached 2.71. The as-prepared HRP-MIP silica NPs could not only differentiate the template from another glycoprotein, but also enrich HRP from spiked human serum. The good results demonstrated their potential in glycoproteomic analysis. © 2014 The Royal Society of Chemistry.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Materials Chemistry B
ISSN: 2050-7518
Year: 2014
Issue: 6
Volume: 2
Page: 637-643
4 . 7 2 6
JCR@2014
6 . 1 0 0
JCR@2023
ESI HC Threshold:355
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: