Indexed by:
Abstract:
The type recognition algorithm of driving conditions was studied based on LVQ neural network, to provide the basis for the intelligent management strategy of hybrid electric vehicles. First, 11 characteristic parameters were extracted from 4 typical road type conditions and the 3 kinds of standard cycle conditions to train the data. Then, the LVQ neural network type recognition algorithm of driving condition was developed. Based on this, a hybrid power system was as an example, which combined with multiple nonlinear regression analysis to develop the corresponding control strategy. Finally, LVQ neural network type recognition simulation model of driving condition was established based on the Simulink simulation platform, type recognition tests were carried on under the Chinese city typical cycle road conditions, standard condition recognition tests were carried on by constructing UDDS+NYCC+UDDS driving conditions. The results show that the established LVQ neural network may accurately identify the type of driving condition types and the control effectiveness of the energy management strategy is improved effectively. © 2017, China Mechanical Engineering Magazine Office. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
China Mechanical Engineering
ISSN: 1004-132X
Year: 2017
Issue: 22
Volume: 28
Page: 2695-2700
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: