Indexed by:
Abstract:
Abstract: The influences of acidic properties and pore structures of H-Beta and H-ZSM-5 zeolites on the reaction properties of n-butane isomerization at low temperatures were investigated. The results showed that bimolecular pathway of n-butane conversion predominates over H-ZSM-5 zeolites, while the monomolecular and bimolecular pathways occur simultaneously over H-Beta zeolites. The conversion rate of n-butane strongly relies on the amount of strong Brønsted acid sites regardless of zeolite topology. However, the topology of zeolites crucially determines the products distribution, and the density of strong Brønsted acid sites plays a secondary role. The cavities of zeolites, formed in the intersections of channels, provide the places for the bimolecular reaction. The formation of trimethyl C8 intermediates is spatially restricted in the narrow channel intersections of H-ZSM-5 zeolites, resulting in higher contribution of n-butane disproportionation reaction. In addition, the narrow pore channels of H-ZSM-5 zeolite limit the monomolecular isomerization of n-butane molecules and affect the diffusion of heavier products (pentane) produced from bimolecular reaction, leading to the severe secondary reaction and high selectivity to propane. In contrast, the pore channels of H-Beta zeolite allow the monomolecular isomerization of n-butane and the deposition of coke. Graphical Abstract: The topology of zeolites crucially determines the products distribution.[Figure not available: see fulltext.]. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
Keyword:
Reprint 's Address:
Email:
Source :
Catalysis Letters
ISSN: 1011-372X
Year: 2019
Issue: 4
Volume: 149
Page: 1017-1025
2 . 4 8 2
JCR@2019
2 . 3 0 0
JCR@2023
ESI HC Threshold:184
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count: 26
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: