Indexed by:
Abstract:
Three-dimensional finite element modeling of the contact between a rigid spherical indenter and a rough surface is presented when considering both the loading and unloading phases. The relationships among the indentation load, displacement, contact area, and mean contact pressure for both loading and unloading are established through a curve fitting using sigmoid logistic and power law functions. The contact load is proportional to the contact area, and the mean contact pressure is related to the characteristic stress, which is dependent on the material properties. The residual displacement is proportional to the maximum indentation displacement. A proportional relationship also exists for plastically dissipated energy and work conducted during loading. The surface roughness results in an effective elastic modulus calculated from an initial unloading stiffness several times larger than the true value of elastic modulus. Nonetheless, the calculated modulus under a shallow spherical indentation can still be applied for a relative comparison. © 2018, The author(s).
Keyword:
Reprint 's Address:
Email:
Source :
Friction
ISSN: 2223-7690
Year: 2019
Issue: 6
Volume: 7
Page: 587-602
5 . 2 9
JCR@2019
6 . 3 0 0
JCR@2023
ESI HC Threshold:150
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: