Indexed by:
Abstract:
Flexible sensors at small scales have potential applications in many fields. Until now, the research on high-performance vibration sensors based on soft materials with high sensitivity and precision, fast response and high stability are still in its infancy. In this work, a flexible, wearable and high precision film sensor based on multi-walled carbon nanotube (MWCNT) was prepared via a vacuum filtration process and then encapsulated within polydimethylsiloxane (PDMS). The sensor exhibits an ultrahigh sensitivity with gauge factor of 214.3 at flexural strain of 0.4%. When used to monitor the vibration responses of a carbon-fiber beam induced by the base excitation and impact hammer, the time and frequency responses were comparable with the results obtained by the accelerometer, with difference less than 1\!%. In addition, when the MWCNT/PDMS thin film was employed as an electronic skin sensor attached on the human body to detect human activities, the high sensitivity and repeatability demonstrate a great potential application in monitoring human motion. © 2020 IOP Publishing Ltd.
Keyword:
Reprint 's Address:
Email:
Source :
Nanotechnology
ISSN: 0957-4484
Year: 2020
Issue: 33
Volume: 31
3 . 8 7 4
JCR@2020
2 . 9 0 0
JCR@2023
ESI HC Threshold:196
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: